The Induction of Seed Germination in Arabidopsis thaliana Is Regulated Principally by Phytochrome B and Secondarily by Phytochrome A.
نویسندگان
چکیده
We examined whether spectrally active phytochrome A (PhyA) and phytochrome B (PhyB) play specific roles in the induction of seed germination in Arabidopsis thaliana (L.) Heynh., using PhyA- and PhyB-null mutants, fre1-1 (A. Nagatani, J.W. Reed, J. Chory [1993] Plant Physiol 102: 269-277) and hy3-Bo64 (J. Reed, P.Nagpal, D.S. Poole, M. Furuya, J. Chory [1993] Plant Cell 5: 147-157). When dormant seeds of each genotype imbibed in the dark on aqueous agar plates, the hy3 (phyB) mutant did not germinate, whereas the fre1 (phyA) mutant germinated at a rate of 50 to 60%, and the wild type (WT) germinated at a rate of 60 to 70%. By contrast, seeds of all genotypes germinated to nearly 100% when plated in continuous irradiation with white or red light. When plated in continuous far-red light, however, frequencies of seed germination of the WT and the fre1 and hy3 mutants averaged 14, nearly 0, and 47%, respectively, suggesting that PhyB in the red-absorbing form prevents PhyA-dependent germination under continuous far-red light. When irradiated briefly with red or far-red light after imbibition for 1 h, a typical photoreversible effect on seed germination was observed in the fre1 mutant and the WT but not in the hy3 mutant. In contrast, when allowed to imbibe in the dark for 24 to 48 h and exposed to red light, the seed germination frequencies of the hy3 mutant were more than 40%. Immunoblot analyses of the mutant seeds showed that PhyB apoprotein accumulated in dormant seeds of the WT and the fre1 mutant as much as in the seeds that had imbibed. In contrast, PhyA apoprotein, although detected in etiolated seedlings grown in the dark for 5 d, was not detectable in the dormant seeds of the WT and the hy3 mutant. The above physiological and immunochemical evidence indicates that PhyB in the far-red-absorbing form was stored in the Arabidopsis seeds and resulted in germination in the dark. Hence, PhyA does not play any role in dark germination but induces germination under continuous irradiation with far-red light. Finally, we examined seeds from a signal transduction mutant, det1, and a det1/hy3 double mutant. The det1 seeds exhibited photoreversible responses of germination on aqueous agar plates, and the det1/hy3 double mutant seeds did not. Hence, DET1 is likely to act in a distinct pathway from PhyB in the photoregulation of seed germination.
منابع مشابه
Seed germination of Arabidopsis thaliana phyA/phyB double mutants is under phytochrome control.
We examined the photocontrol of seed germination in the phyA/phyB double mutants of Arabidopsis thaliana seeds. Dormant phyA/phyB seeds showed a red/far-red light (R/FR)-reversible induction of seed germination. This suggests the involvement of at least one other phytochrome, phyC, D, and/or E, in controlling seed germination. We designated this spectrally active phytochrome in phyA/phyB as phy...
متن کاملMode of phytochrome B action in the photoregulation of seed germination in Arabidopsis thaliana.
Arabidopsis thaliana seeds imbibed for a short duration show phytochrome B (PhyB)-specific photo-induction of germination. Using this system, the relationship was determined between the amount of PhyB in seeds and photon energy required for PhyB-specific germination in two transgenic Arabidopsis lines transformed with either the Arabidopsis PhyB cDNA (ABO) or the rice PhyB cDNA (RBO). Immunoche...
متن کاملPhytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis
Seeds maintain a dormant state to withstand adverse conditions and germinate when conditions become favourable to give rise to a new generation of flowering plants. Seed dormancy and germination are tightly controlled by internal and external signals. Although phytochrome photoreceptors are proposed to regulate primary seed dormancy, the underlying molecular mechanism remains elusive. Here we s...
متن کاملGibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome-deficient mutants of Arabidopsis.
Plant growth and development are regulated by numerous internal and external factors. Among these, gibberellin (GA) (an endogenous plant growth regulator) and phytochrome (a photoreceptor) often influence the same processes. For example, in plants grown in the light Arabidopsis thaliana hypocotyl elongation is reduced by GA deficiency and increased by phytochrome deficiency. Here we describe ex...
متن کاملPIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana.
The first decision made by an angiosperm seed, whether to germinate or not, is based on integration of various environmental signals such as water and light. The phytochromes (Phys) act as red and far-red light (Pfr) photoreceptors to mediate light signaling through yet uncharacterized pathways. We report here that the PIF3-like 5 (PIL5) protein, a basic helix-loop-helix transcription factor, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 104 2 شماره
صفحات -
تاریخ انتشار 1994